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Reflection of waves from disordered surfaces 
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Received 27 February 1989 

Abstract. The transmission of waves through disordered media has received much attention 
in the context of electrical conduction, and numerous techniques have been brought to bear 
on the problem. Here we focus on the reflection coefficient, a closely related quantity. The 
change in reflectivity on adding a new element to a disordered chain can be calculated by a 
recursion formula. This in turn suggests a novel formulation of the problem in terms of 
transfer matrices. These new matrices can be calculated explicitly and, although in principle 
of infinite dimensions, can be approximated by a truncated form. Using this tool we show 
how some problems can be solved exactly and how an accurate perturbation expansion can 
be made for others. 

1. Introduction 

The general question of wave motion in disordered media is a difficult one which has 
not been fully resolved. The crucial point that emerges in these systems is that fluctuations 
in quantities, such as the transmission coefficient, grow without bound as the sample 
becomes longer, in contrast to simpler problems in disorder where increasing size brings 
with it better behaved statistics. Where waves are concerned statistics are always with 

The reflection coefficient offers prospects of a somewhat more tractable quantity. 
We expect that for a very thick sample waves will be reflected from the surface with 
nearly 100% probability, which leaves only the question of with what phase they are 
reflected. We shall show that for a simple one-dimensional model of a surface both 
numerical and analytical work confirms this to be the case. The distribution of phases 
converges to a limit with increasing length of sample. Somewhat paradoxically, this 
distribution grows broader as the disorder is decreased. 

Our analytical approach to the problem is a novel one which contrasts with other 
approaches in its simplicity. We have succeeded in finding a generalised transfer matrix 
for the reflection coefficient of a disordered medium. The matrix, though infinite, can 
be approximated by a finite truncation, and is amenable to perturbative treatments, and 
in some cases to analytical solution. 

Previous work has concentrated on the problem of electrical conduction (Landauer 
1957, 1970, Anderson 1958, Anderson et a1 1980, Thouless 1972) which has to do 
with the transmission coefficient of the disordered sample. Progress has been seen in 
analytical work (Imry 1986, Pichard 1986, Pichard and Sarma 1981a, b), the invariant 
embedding method (Bellman and Wing 1975), and in numerical simulations (Mac- 
Kinnon and Kramer 1981, 1983). We have developed the transfer matrix approach 

us. 
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Figure 1. A region of disordered material partly reflects an incident wave. 

(Kirkman and Pendry 1984a, b, Pendry 1982a, b, c, 1984, 1986, 1987, Pendry and 
Kirkman 1984,1986, Pendry eta1 1986, Pendry and Castaiio 1988a, b, Slevin and Pendry 
1988). 

First we assume a one-dimensional system which consists of two ordered regions 
sandwiching a region of disorder; figure 1 shows what we have in mind. We suppose that 
we can further decompose the disordered region into statistically independent units. For 
example, in the electron case these units might be atoms in a substitutionally disordered 
alloy. In the case of sound waves in a rod they might be randomly placed imperfections 
in the rod. Each of these units is in turn characterised by a reflection and transmission 
coefficient, as shown in figure 2. This is the simplest formulation of the problem we can 

-> exp l + i k z )  

<- rn exp (-ikz) 

A 

-> tn exp (+ikz) 

Ordered Isolated Ordered 
nth unit 

Figure 2. A single unit of impurity partly reflects an incident wave. 

make. All manner of embellishments may be imagined, but the model already contains 
the essence of the problem and presents a major challenge to theorists. A review of ID 
work can be found in Erdos and Herndon (1982). Related work on the reflection 
coefficient can be found in Heinrichs (1988), Lambert and Thorpe (1982), Stone et a1 
(1983), Sulem (1973). 

In earlier studies of waves in disordered media, transfer matrices have played an 
important role. The transfer matrix is a function only of the reflection and transmission 
coefficients of the system and has the property that it is the ordered product of the 
individual transfer matrices for the component units: 

L 

MI. = It mn* (1) 
n = l  

This linear relationship offers a tremendous advantage in that, for a system of statistically 
independent units, ML can be averaged exactly simply by averaging the individual 
components. The problem is that in its elementary form the transfer matrix contains 
functions of R and T that are not closely related to observable. It was the achievement 
of our earlier work to generalise ML to contain more relevant functions of R and T. 

In this work we seek a transfer matrix for the reflection coefficient and have been 
lucky enough to find one which takes a simple form. In contrast with the conventional 
transfer matrix, the new transfer matrix is a function only of R, not of T. We derive it as 
follows. 

Suppose we have a system comprising n random units, reflection coefficients R,. We 
now put in place the (n  + 1)th random unit and ask what is the new Rn+l. We obtain a 
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simple expression by summing the multiple scattering between the new unit and the old 
units: 

Rn+1 =rn+1 + tn+lRntn+l + tn+lRnrntlRntn+l * * * 

+ tn+l(Rnrn+l)SRn(tn+l + .  . . 
- r n + l  + tn+lRntn+l/(l -rn+lRn) (2) - 

where we have assumed for simplicity that the transmission coefficient of the unit is 
symmetrical. In our quest for a transfer matrix it is the series that interests us, not the 
closed expression for the sum. It is essentially a series in powers of R,: 

Define a vector whose elements comprise all the powers of R,: 

then we can write equation (2) in matrix form: 

(3) 

V ,  = [R; ,  R; ,  R; ,  R; ,  ~ 5 , .  . . I  (4) 

V n + 1  = mntlvn. (5  1 

R,+l = rn+lR: + t;+,R; + t;+lr;+lR; + . . . + tn+l 2 ,.S-lRS+l n + l  + . . . . 

where m, is our new transfer matrix, 
0 . .  
t;r; . . 

It has the fundamental property of the old transfer matrix 
L 

M L  = I2 mn 
n = l  

and 

M L  = 

RL 0 0 0 . . .  
RL TiRL TiRL T i R i  . . .  
R i  . . .  
R i  . . .  
R i  , . .  
. . . . . .  
. . . . . .  

Thus we can average any power of RL using the result 
L 

( M L )  = I2 (mn> = (ml>L 
n = l  

(7) 

(9) 

provided that all the units are independently distributed according to the same statistics. 
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These transfer matrices have infinite dimensions, but we shall show that truncating 
to finite dimensions in a systematic manner will enable us to calculate quantities of 
interest to the desired accuracy. 

In the long length limit when R nearly always has modulus unity, 

K L  = lRLl exp(i0J = exp(i0J. 

Then because we can calculate 

( R f )  = (exp(iN0)) = 1 exp(iNO)P(O) d O  

we have the Fourier transform of P ( 0 ) ,  from which we can reconstruct P ( 0 )  itself, 
Obviously (m,,) is required to have eigenvalues 

le,/ 6 1. (12) 

eo = 1 (13) 

We can see from equation (8) that there is always one eigenvalue 

corresponding to a left-hand eigenvector of 

Ub = [1,0,0,0,  * . . I .  
This eigenvalue gives the asymptotic behaviour of the system. Although at first sight this 
would appear to give asymptotic properties independent of the details of the disorder, 
this is not the case, because the right-hand eigenvector ub, corresponding to eo is more 
complex and involves details of the distribution: 

( R f )  = (ub>Ne&c>o* (15) 

2. Derivation of the full transfer matrix 

Having defined our new transfer matrix and indicated the form which it takes, we need 
to give a prescription for its construction. We start from the recursion formula 

R,+l = r + t2R,/(1 - rR,) (16)  

where we have written r and t in place of rn+ and t,+ for clarity. Raising each side of 
equation (16) to the ith power gives 

( R n + l ) i  = [ r  + t2R,/(1 - rR,)]' (17) 

which may be expanded binomially: 

where 
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min(i, j )  
i ! ( j  - l ) !  

r i + j  t2 r 2  k 
( c ) i J  = ,F; (i - k)!k!(k - l)!(j - k ) !  ( 1  1 .  

This series converges under all physical circumstances because of the unitarity condition 

IrR,] G 1 .  (20) 

Hence we can find the general element of m,: 

(mn)o,j = aoj  

(mn)i,o = aiori 
min(i , j)  

i ! ( j  - l ) !  
k = l  ( i  - k)!k!(k  - l ) ! ( j  - k ) !  

(mn)i,j = 22 r i + j ( t 2 / r 2 ) k .  

3. Solutions for special cases 

Suppose we have a binary distribution of units in the disordered region such that unit 1 
is identical with those occurring in the ordered regions, and further suppose that for this 
unit the energy is such that 

t =  - 1  t 2 = 1  

then the transfer matrix for unit 1 is the unit matrix, which commutes with the transfer 
matrix for unit 2. Thus for a system with x unit 2s and L - x unit Is in the disordered 
region, the reflection coefficient is that of a single continuous slab of x unit 2s and 
can be calculated by conventional means of matching Bloch waves. The probability 
distribution of reflectivities is given simply by the statistical probability of finding x unit 
2s in the disordered region. In the limit of a large system there will always be a large 
number of unit 2s and the distribution of reflection coefficients will converge on a single 
value of the reflection coefficient. 

The same result holds as in the case for unit 1: 

t = + l  P = 1 .  (22) 

For our second example take unit 1 to be identical with the units in the ordered 
regions. Therefore once more its reflection coefficient is zero, but now we allow its 
transmission coefficient to have a phase 

t l  = exp(icu) r l  = 0. (23) 

Unit 2 is taken to have unit reflection coefficient 

t2 = 0 r2 = exp(ip) 

so that on constructing ml and m2 we find 
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m2 = 

ml = 

- 
1 0 0 0 . . . . . . . . . . . . . . . . . .  - 
exp(ip) 0 0 . . . . . . . . . . . . . . . . . . . .  
exp(2iP) 0 . . . . . . . . . . . . . . . . . . . . . . .  
exp(3iP) 0 . .  . . . . . . . . . . . . . . . . . . . . .  
exp(4iP) 0 . .  . . . . . . . . . . . . . . . . . . . . .  
exp(5iP) 0 . .  . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - 

1 0  0 0 . . . . . . . . . . . .  
0 exp(2ia) 0 o . . . . . . .  . . . . .  
0 0  exp(4ia) 0 0 . . .  
0 0  0 exp(6ia) 0 . . .  
0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(m> = 

1 0 0 . . . . . . .  
P2 exp(iP) P1 exp(2ia) 0 . . . . . . .  
P2 exp(2iP) 0 P, exp(4ia) . . . . . . .  
P2 exp(3iP) 0 0 . . . . . . .  
P2exp(4iP) 0 . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(25) 

Intuitively we can see what the result must be: the wave travels into the disordered 
region passing through all unit Is, let us sayx of them, until it meets a unit 2 and is then 
reflected. The total reflection coefficient is zero unless the wave meets a unit 2, otherwise 
it takes the value 

R ( x )  = exp(2iax + io). 
It only remains to calculate the probability of encountering x unit 1s before a unit 2, 
which can be done from simple statistics: 

P(x) = Pz(1 - P2)" = P*Pf x s L. (27) 
The probability of zero reflection coefficient is 

Po = P f .  

In the limit of L = 

( R E )  = p2 E PZ exp(2~ iax  + Nip) 

this gives for the moments 
m 

x = o  

= p2 exp(NiP)/(I - Pl exp(2Nia)). 
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Alternatively we can diagonalise (m) and verify that the moments of R which we 
obtain are consistent with this probability distribution. The right-hand eigenvector of 
(m) corresponding to unit eigenvalue is by inspection 

ub = [I , , , P 2  exp(sip)/(l - PI exp(2sia)) . . .]. 

(RZ) = P 2  exp(NiP)/( 1 - P1 exp(2Nia)) 

(30) 

Therefore in the long-length limit, from the e = 1 eigenvector of (m), 

(31) 

which agrees with equation (29). 

4. Perturbation theory 

In this section we show that our new transfer matrix can be treated by perturbation 
theory in the weak scattering limit. For simplicity we consider the discrete model of 
disordered systems described by an Anderson Hamiltonian with diagonal disorder only: 

Vqn+1 + VVn-1 + E n V n  = EVn. (32) 

This is the tight-binding approximation with one orbital per site, nearest-neighbour 
hopping assumed constant independent of site and two-centre integrals V only. q,, 
represents the amplitude of the orbital on the nth site in the total wave function, E, the 
site energy of the orbital at the nth position and E the energy of the wave incident from 
the perfect leads. In the leads 

E ,  = 0 

E = 2Vcos(k) k = [0, n]. 
(33) 

(34) 

For these systems we derive the reflection and transmission amplitudes of individual 
units as 

r ,  = is ,  exp(-ik)/(l - id,) (35) 

6, = -~,/(2Vsin(k)).  (36) 

t ,  = exp(-ik)/(l - is,) 

where 

These obey the general requirements of unitarity and current conservation. Substituting 
these definitions in the recursion relation (2) for R, we get the expression 

exp(-ik) exp( - ik)R , [is, + 
1 - isL 1 - i6 ( l  + exp(-ik)R,) RL+1 = (37) 

In practice our equations simplify if we work with a reflection matrix with shifted phase 

R; = exp(+ik)R,. 

Equation (6) for the transfer matrix shows that diagonal elements are of order unity, 
and each successive off-diagonal element contains one further power of the reflection 
coefficient r. Since r is first order in our small parameter 6, this means that the transfer 
matrix has a banded form. Each band removed by n elements from the diagonal is of 
order 6". 
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From equation (37) we can derive the ensemble average transfer matrix (m,) as a 
series in the moments of the distribution of disorder (lidn/). This series is convergent if 

( a n )  < 0.5". (381 

The coefficients in this series are matrices with 2n + 1 bands. In this paper we consider 
symmetrical distributions of disorder only, so that (m,y) may be written in the form 

where 

b 
(2n + i - m - l)! 

D$;) = exp( -2ikj)i(2n)! m = a  (2n - j + i - m)!( j  - i + m)!m!(n - m)!(i  - m)! (40) 

and 

a = -min(O,j - i) b = min(2n -1  + i, min(2n, i)). (411 

The reflection coefficient and its moments can be found from equations (8) and (9). 
The prescription is a simple one: the transfer matrix is raised to the Lth power by 
diagonalising, and then raising each of the eigenvalues to the Lth power. Expressed 
more formally, we must evaluate the expression: 

where ( U : ) .  is the nth component of the right eigenvector of (m,) corresponding to the 
eigenvalue ep, and is the zeroth component of the left eigenvector. In this paper 
we evaluate these eigenvectors and eigenvalucs to first-order Rayleigh Schrodinger 
perturbation theory. We write the eigenvalue equation 

(D(0) + Dt)v ;  = epv j  (43) 

where from equation (40) 

and develop the perturbation expansion in D'.  

diagonal elements exp( -2ijk) have degeneracies, explicitly when 
One point to note is that at certain values of the wavevector k the zeroth-order 

k = qn/r  (q  and r integer). (45) 

The most extreme instance of degeneracy occurs at the band centre, where every 
other diagonal element is degenerate. 
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Figure 3. (a) Loci of the first moment of the distribution of reflected amplitudes for wavevec- 
tor k between 0 . 5 2 ~  and 0 .95;~ ,  for a random substitution alloy ensemble of length 10 units 
and disorder parameter S = 0.1. The full curve is the first-order perturbation theory result; 
the broken curve is the exact numerical result. (b)  Loci of the second moment of the 
distribution of reflected amplitudes. Other details as for (a ) .  

When we are near a degeneracy the moments series for (m,) is truncated at some 
maximum moment order, 

nmax  < ri2. (46) 
This reduces the problem to non-degenerate perturbation theory, and equation (42) 
becomes 

The loci of the first two moments with k are shown in figure 3 for a substitutionally 
disordered alloy ensemble of length ten units. 

A symmetrical distribution of disorder implies two simple symmetries for the 
moments of the distribution of reflection amplitudes. First, under the transformation 
k 4  - k  the ensemble average matrix (m,) + (m,)* and hence 

( R  ( k ) )  = ( R  ;I‘ (- k ) ) * .  (48) 
Second, if we define k‘ = (n/2) - k the same symmetry exists if we put k’ -+ - k t ,  that 
is : 

( R r [ ( 7 ~ / 2 )  + k ’ ] )  = (H?[ (n /2 )  - k ’ ] ) * .  (49) 
Due to this symmetry the plots need show only one-half of the band. 

The band centre, where every other zeroth-order diagonal element is degenerate, is 
a special case since the truncation method described above is not possible without cutting 
the disorder out of the problem. That is, there are only two different zeroth-order 
eigenvalues at the band centre and the first term in the series for (m,) has five diagonals. 
Hence the condition for the approximation to be possible 

r ’ 2 n m m  
is not satisfied. However, if we truncate the series at the first matrix, the secular equation 
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is tri-diagonal and we find a non-zero limit for each moment of the distribution as the 
disorder tends to zero. This same anomaly was found at the band centre by Kappus and 
Wegner (1981) for the density of states. 

Turning now to the long-length limit, we assume that the unit eigenvalue determines 
the asymptotic behaviour of the moments. This is borne out by direct evaluation to first 
order of the eigenvalues determining the form of ( R y )  for any small disorder. Hence 

( R r )  = (exp(in0)) = ( U b ) n .  (50) 
The negative moments may be found by taking the complex conjugate of equation (50). 
These moments may be used to evaluate the distribution of reflection phases in the 
following way. By definition: 

(exp(in0)) = exp(in@)P(O) d e .  i: 
If we multiply both sides of this equation by exp( -in@’) and sum over n from - = to = 
we derive the Fourier series for P ( 0 )  in terms of the moments (exp(in0)): 

We show in figure 4 plots of P ( 0 )  at different positions in the band including the band 
centre. We include only those for half the band since the symmetry gives rise in this limit 
to 

P(k  = (n/2) + k‘ : 0) = P ( k  = (~d/2) - k ‘ :  -0). (53)  

5. Monte Carlo calculations 

From the reflection coefficient found using the recurrence relation (2), or an adaptation 
of it, we can calculate quantities of interest for a large random selection of chains in the 
ensemble, and either average them or place them in a histogram to obtain a distribution. 
The statistical fluctuations diminish as l/N’” for average quantities and as (B/N)1/2 for 
distributions, where B is the bin number in the histogram and Nis  the number of chains 
randomly chosen from the ensemble. 

For a random substitutional alloy ensemble of short chains, length L ,  the statistical 
fluctuations in the moments ( R y )  calculated by the Monte Carlo technique are still 
significant, even after the number of trials exceeds the size of the ensemble. So it is faster 
simply to evaluate the reflection coefficient of each chain in the ensemble and calculate 
the moments ( R y )  directly. This we did by iterating relation (2)  directly to the required 
length, with the boundary condition RA = 0. 

The distribution of reflection phases P ( 0 )  obeys a limit theorem, that is it converges 
to a given form in the limit of long chains. Practically this limit is achieved when the 
length of the chain is very much greater than the localisation length. Hence in principle we 
could find P ( 0 )  using the Monte Carlo technique with relation (2). Whilst undoubtedly it 
gives the correct form for P ( 0 )  this technique is not practical in the weak-disorder limit, 
where we have done our perturbation theory, for a combination of two reasons. Firstly, 
the distributions are almost flat, meaning that we have to look at a very large number of 
chains in the ensemble in order to iron out the fluctuations introduced by the Monte 
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Figure 4. Distribution of the reflection phases for a random substitutional alloy ensemble in 
the long-length limit with disorder parameter 6 = 0.1. The full curve is the first-order 
perturbation theory result, the crossed line is the Monte Carlo numerical result for 10’ data 
points for (a) k = n/8; ( b )  k = n/4; ( c )  k = 3n/8; (d )  k = n/2. 

Carlo technique. Secondly, the localisation length is large and hence each chain must 
be made very long. 

Instead we assume that the limiting distribution may be found by taking an arbitrary 
section of chain which has a pure phase reflection amplitude and randomly adding units 
of either type to it, placing successive phases in a histogram. An iterative relation for 
such a system may be derived from equation (2) by assuming IR’l = 1: 

t L + 1  = 28L+1 + ( t L  - + t L T )  (54) 

t L  = tan(eL/2)  z = tank.  ( 5 5 )  

where 

By running very long simulations using the first technique and comparing them with 
results from iterating (54), we have been able to satisfy ourselves that the assumptions 
above are justified and that in fact the statistics are even improved. 
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6. Conclusions 

We have developed a new transfer matrix applicable to calculation of the reflection 
coefficient of a disordered system. The matrix has a simple form and can be applied 
either to analytical or to numerical studies. We give examples of each type of application 
and show the accuracy of the method by comparison with numerical simulations. 
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